Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

نویسندگان

  • B. Zobrist
  • C. Marcolli
  • T. Koop
  • B. P. Luo
  • D. M. Murphy
  • U. Lohmann
  • A. A. Zardini
  • U. K. Krieger
  • T. Corti
چکیده

Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric) have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD) acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ∼50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxal...

متن کامل

Laboratory studies on carboxylic acids and their interaction with ice nucleation

For the formation of clouds aerosol particles play an important role. But not all particles influence the cloud nucleation in the same way. This arises from the fact that the atmosphere holds many different types of aerosol particles. In the upper troposphere the main part of the aerosol is composed of inorganic materials as mineral dust, but also biologic materials, soot and other carbonaceous...

متن کامل

Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, hom...

متن کامل

Gas-aerosol-cirrus interactions

This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry 5 of aerosol precursors, binary homogeneous aerosol nucleation, h...

متن کامل

Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006